36 research outputs found

    Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals.

    Get PDF
    Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline. A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia

    Effects of Dietary Supplementation of Carnosine on Mitochondrial Dysfunction, Amyloid Pathology, and Cognitive Deficits in 3xTg-AD Mice

    Get PDF
    BACKGROUND: The pathogenic road map leading to Alzheimer's disease (AD) is still not completely understood; however, a large body of studies in the last few years supports the idea that beside the classic hallmarks of the disease, namely the accumulation of amyloid-β (Aβ) and neurofibrillary tangles, other factors significantly contribute to the initiation and the progression of the disease. Among them, mitochondria failure, an unbalanced neuronal redox state, and the dyshomeostasis of endogenous metals like copper, iron, and zinc have all been reported to play an important role in exacerbating AD pathology. Given these factors, the endogenous peptide carnosine may be potentially beneficial in the treatment of AD because of its free-radical scavenger and metal chelating properties. METHODOLOGY: In this study, we explored the effect of L-carnosine supplementation in the 3xTg-AD mouse, an animal model of AD that shows both Aβ- and tau-dependent pathology. PRINCIPAL FINDINGS: We found that carnosine supplementation in 3xTg-AD mice promotes a strong reduction in the hippocampal intraneuronal accumulation of Aβ and completely rescues AD and aging-related mitochondrial dysfunctions. No effects were found on tau pathology and we only observed a trend toward the amelioration of cognitive deficits. CONCLUSIONS AND SIGNIFICANCE: Our data indicate that carnosine can be part of a combined therapeutic approach for the treatment of AD

    The thiol-modifying agent N-ethylmaleimide elevates the cytosolic concentration of free Zn(2+) but not of Ca(2+) in murine cortical neurons.

    No full text
    International audienceThe membrane permeant alkylating agent N-ethylmaleimide (NEM) regulates numerous biological processes by reacting with thiol groups. Among other actions, NEM influences the cytosolic concentration of free Ca(2+) ([Ca(2+)]i). Depending on the cell type and the concentration used, NEM can promote the release of Ca(2+), affect its extrusion, stimulate or block its entry. However, most of these findings were obtained in experiments that employed fluorescent Ca(2+) probes and one major disadvantage of such experimental setting derives from the lack of specificity of the probes as all the so-called "Ca(2+)-sensitive" indicators also bind metals like Zn(2+) or Mn(2+) with higher affinities than Ca(2+). In this study, we examined the effects of NEM on the [Ca(2+)]i homeostasis of murine cortical neurons. We performed live-cell Ca(2+) and Zn(2+) imaging experiments using the fluorescent probes Fluo-4, FluoZin-3 and RhodZin-3 and found that NEM does not affect the neuronal [Ca(2+)]i homeostasis but specifically increases the cytosolic and mitochondrial concentration of free Zn(2+)([Zn(2+)]i). In addition, NEM triggers some neuronal loss that is prevented by anti-oxidants such as N-acetylcysteine or glutathione. NEM-induced toxicity is dependent on changes in [Zn(2+)]i levels as chelation of the cation with the cell-permeable heavy metal chelator, N,N,N'N'-tetrakis(-)[2-pyridylmethyl]-ethylenediamine (TPEN), promotes neuroprotection of cortical neurons exposed to NEM. Our data indicate that NEM affects [Zn(2+)]i but not [Ca(2+)]i homeostasis and shed new light on the physiological actions of this alkylating agent on central nervous system neurons

    Autonomic Status Epilepticus in a Patient with Parasellar Meningioma: A Case Report

    No full text
    International audienceAutonomic status epilepticus (Aut SE) is a condition characterized by ongoing focal autonomic seizure lasting for >30 min. Aut SE can show a variety of clinical manifestations including vomiting, nausea, changes in heart rate, piloerection, pupillary abnormalities, and visual abnormalities. Although Aut SE is a common finding in childhood in the context of Panayiotopoulos syndrome, few reports have described this condition during adulthood. In the present report, we describe a case of Aut SE in an adult patient with parasellar meningioma and bilateral frontotemporal epileptiform activity on EEG record
    corecore